Explicando las Deep Neural Networks

 Las redes neuronales profundas se están volviendo cada vez más populares debido a su éxito revolucionario en diversas áreas, como la visión por computadora, el procesamiento del lenguaje natural y el reconocimiento de voz. Sin embargo, los procesos de toma de decisiones de estos modelos generalmente no son interpretables para los usuarios. En varios dominios, como la salud, las finanzas o el derecho, es fundamental conocer las razones detrás de una decisión tomada por un sistema de inteligencia artificial. Por lo tanto, recientemente se han explorado varias direcciones para explicar los modelos neuronales.

En esta tesis, investigo dos direcciones principales para explicar las redes neuronales profundas. La primera dirección consiste en métodos explicativos post-hoc basados ​​en características, es decir, métodos que tienen como objetivo explicar un modelo ya entrenado y fijo (post-hoc), y que proporcionan explicaciones en términos de características de entrada, como tokens para texto y superpíxeles para imágenes (basadas en funciones). La segunda dirección consiste en modelos neuronales autoexplicativos que generan explicaciones en lenguaje natural, es decir, modelos que tienen un módulo incorporado que genera explicaciones para las predicciones del modelo.

La conclusión es que las explicaciones no son únicas ni seguras.

https://arxiv.org/abs/2010.01496

Editado por Aniceto Pérez y Madrid, Especialista en Ética de la Inteligencia Artificial y Editor de Actualidad Deep Learning (@forodeeplearn).

Los artículos publicados son incluidos por su estimada relevancia y no expresan necesariamente los puntos de vista del Editor este Blog.

Comentarios

Popular

Es hora de que la IA se explique

Ann Cavoukian explica por qué la vigilancia invasiva no debería ser la norma en los entornos urbanos modernos y sostenibles

Gemelos digitales, cerebros virtuales y los peligros del lenguaje