Aprendizaje automático interpretable: breve historia, estado de la técnica y desafíos

 Presentamos una breve historia del campo del aprendizaje automático interpretable (IML), brindamos una descripción general de los métodos de interpretación de vanguardia y discutimos los desafíos. La investigación en IML se ha disparado en los últimos años. Tan joven como es el campo, tiene más de 200 años de raíces en el modelado de regresión y el aprendizaje automático basado en reglas, a partir de la década de 1960. Recientemente, se han propuesto muchos métodos nuevos de IML, muchos de ellos independientes del modelo, pero también técnicas de interpretación específicas para el aprendizaje profundo y los conjuntos basados ​​en árboles. Los métodos de IML analizan directamente los componentes del modelo, estudian la sensibilidad a las perturbaciones de entrada o analizan aproximaciones sustitutas locales o globales del modelo de ML. El campo se acerca a un estado de preparación y estabilidad, con muchos métodos no solo propuestos en la investigación, sino también implementados en software de código abierto. Pero aún quedan muchos desafíos importantes para el IML, como el manejo de las características dependientes, la interpretación causal y la estimación de la incertidumbre, que deben resolverse para su aplicación exitosa a problemas científicos. Otro desafío es la falta de una definición rigurosa de interpretabilidad, que es aceptada por la comunidad. Para abordar los desafíos y avanzar en el campo, instamos a recordar nuestras raíces del modelado interpretable y basado en datos en estadísticas y ML (basado en reglas), pero también a considerar otras áreas como el análisis de sensibilidad, la inferencia causal y las ciencias sociales. .

https://arxiv.org/abs/2010.09337

Editado por Aniceto Pérez y Madrid, Especialista en Ética de la Inteligencia Artificial y Editor de Actualidad Deep Learning (@forodeeplearn).

Los artículos publicados son incluidos por su estimada relevancia y no expresan necesariamente los puntos de vista del Editor este Blog.


Comentarios

Popular

Es hora de que la IA se explique

Ann Cavoukian explica por qué la vigilancia invasiva no debería ser la norma en los entornos urbanos modernos y sostenibles

Gemelos digitales, cerebros virtuales y los peligros del lenguaje