Equidad Algorítmica: Dificultades y Alguna Solución
Aniceto Pérez y Madrid La toma de decisiones en el mundo real es compleja. Habitualmente las decisiones humanas tienen diversos objetivos que alcanzar y el proceso consiste en ponderar en cada caso los condicionantes en función del contexto. Los modelos de aprendizaje automático aspiran a ser capaces de lograr automatizar la toma de decisiones de una forma próxima a la humana. Así, los procesos serían más rápidos y más uniformes. Para crear modelos que tomen decisiones similares a las humanas se utilizan ejemplos con datos de decisiones pasadas tomadas por decisores humanos. Al aplicar en la vida real los modelos obtenidos de ese modo se han detectado problemas: resultados inesperados y promedios estadísticos de los resultados muy sesgados. Al investigar causas se ha visto que los datos de decisiones anteriores estaban sesgados. Esto ha hecho surgir inquietudes sobre estos modelos y dudas sobre la forma en que se han estado tomando decisiones. Si el modo “humano” de decisión es...